omdb/tiv_lib.cpp

395 lines
13 KiB
C++
Raw Permalink Normal View History

2025-12-13 06:22:27 +00:00
/*
* Copyright (c) 2017-2023, Stefan Haustein, Aaron Liu
*
* This file is free software: you may copy, redistribute and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
* Alternatively, you may copy, redistribute and/or modify this file under
* the terms of the Apache License, version 2.0:
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tiv_lib.h"
#include <algorithm>
#include <array>
#include <bitset>
#include <cmath>
#include <functional>
#include <map>
const int END_MARKER = 0;
// An interleaved map of 4x8 bit character bitmaps (each hex digit represents a
// row) to the corresponding Unicode character code point.
constexpr unsigned int BITMAPS[] = {
0x00000000, 0x00a0, 0,
// Block graphics
// 0xffff0000, 0x2580, 0, // upper 1/2; redundant with inverse lower 1/2
0x0000000f, 0x2581, 0, // lower 1/8
0x000000ff, 0x2582, 0, // lower 1/4
0x00000fff, 0x2583, 0,
0x0000ffff, 0x2584, 0, // lower 1/2
0x000fffff, 0x2585, 0,
0x00ffffff, 0x2586, 0, // lower 3/4
0x0fffffff, 0x2587, 0,
// 0xffffffff, 0x2588, // full; redundant with inverse space
0xeeeeeeee, 0x258a, 0, // left 3/4
0xcccccccc, 0x258c, 0, // left 1/2
0x88888888, 0x258e, 0, // left 1/4
0x0000cccc, 0x2596, 0, // quadrant lower left
0x00003333, 0x2597, 0, // quadrant lower right
0xcccc0000, 0x2598, 0, // quadrant upper left
// 0xccccffff, 0x2599, // 3/4 redundant with inverse 1/4
0xcccc3333, 0x259a, 0, // diagonal 1/2
// 0xffffcccc, 0x259b, // 3/4 redundant
// 0xffff3333, 0x259c, // 3/4 redundant
0x33330000, 0x259d, 0, // quadrant upper right
// 0x3333cccc, 0x259e, // 3/4 redundant
// 0x3333ffff, 0x259f, // 3/4 redundant
// Line drawing subset: no double lines, no complex light lines
0x000ff000, 0x2501, 0, // Heavy horizontal
0x66666666, 0x2503, 0, // Heavy vertical
0x00077666, 0x250f, 0, // Heavy down and right
0x000ee666, 0x2513, 0, // Heavy down and left
0x66677000, 0x2517, 0, // Heavy up and right
0x666ee000, 0x251b, 0, // Heavy up and left
0x66677666, 0x2523, 0, // Heavy vertical and right
0x666ee666, 0x252b, 0, // Heavy vertical and left
0x000ff666, 0x2533, 0, // Heavy down and horizontal
0x666ff000, 0x253b, 0, // Heavy up and horizontal
0x666ff666, 0x254b, 0, // Heavy cross
0x000cc000, 0x2578, 0, // Bold horizontal left
0x00066000, 0x2579, 0, // Bold horizontal up
0x00033000, 0x257a, 0, // Bold horizontal right
0x00066000, 0x257b, 0, // Bold horizontal down
0x06600660, 0x254f, 0, // Heavy double dash vertical
0x000f0000, 0x2500, 0, // Light horizontal
0x0000f000, 0x2500, 0, //
0x44444444, 0x2502, 0, // Light vertical
0x22222222, 0x2502, 0,
0x000e0000, 0x2574, 0, // light left
0x0000e000, 0x2574, 0, // light left
0x44440000, 0x2575, 0, // light up
0x22220000, 0x2575, 0, // light up
0x00030000, 0x2576, 0, // light right
0x00003000, 0x2576, 0, // light right
0x00004444, 0x2577, 0, // light down
0x00002222, 0x2577, 0, // light down
// Misc technical
0x44444444, 0x23a2, 0, // [ extension
0x22222222, 0x23a5, 0, // ] extension
0x0f000000, 0x23ba, 0, // Horizontal scanline 1
0x00f00000, 0x23bb, 0, // Horizontal scanline 3
0x00000f00, 0x23bc, 0, // Horizontal scanline 7
0x000000f0, 0x23bd, 0, // Horizontal scanline 9
// Geometrical shapes. Tricky because some of them are too wide.
// 0x00ffff00, 0x25fe, 0, // Black medium small square
0x00066000, 0x25aa, 0, // Black small square
// 0x11224488, 0x2571, 0, // diagonals
// 0x88442211, 0x2572, 0,
// 0x99666699, 0x2573, 0,
// 0x000137f0, 0x25e2, 0, // Triangles
// 0x0008cef0, 0x25e3, 0,
// 0x000fec80, 0x25e4, 0,
// 0x000f7310, 0x25e5, 0,
// Teletext / legacy graphics 3x2 block character codes.
// Using a 3-2-3 pattern consistently, perhaps we should create automatic
// variations....
0xccc00000, 0xfb00, FLAG_TELETEXT,
0x33300000, 0xfb01, FLAG_TELETEXT,
0xfff00000, 0xfb02, FLAG_TELETEXT,
0x000cc000, 0xfb03, FLAG_TELETEXT,
0xccccc000, 0xfb04, FLAG_TELETEXT,
0x333cc000, 0xfb05, FLAG_TELETEXT,
0xfffcc000, 0xfb06, FLAG_TELETEXT,
0x00033000, 0xfb07, FLAG_TELETEXT,
0xccc33000, 0xfb08, FLAG_TELETEXT,
0x33333000, 0xfb09, FLAG_TELETEXT,
0xfff33000, 0xfb0a, FLAG_TELETEXT,
0x000ff000, 0xfb0b, FLAG_TELETEXT,
0xcccff000, 0xfb0c, FLAG_TELETEXT,
0x333ff000, 0xfb0d, FLAG_TELETEXT,
0xfffff000, 0xfb0e, FLAG_TELETEXT,
0x00000ccc, 0xfb0f, FLAG_TELETEXT,
0xccc00ccc, 0xfb10, FLAG_TELETEXT,
0x33300ccc, 0xfb11, FLAG_TELETEXT,
0xfff00ccc, 0xfb12, FLAG_TELETEXT,
0x000ccccc, 0xfb13, FLAG_TELETEXT,
0x333ccccc, 0xfb14, FLAG_TELETEXT,
0xfffccccc, 0xfb15, FLAG_TELETEXT,
0x00033ccc, 0xfb16, FLAG_TELETEXT,
0xccc33ccc, 0xfb17, FLAG_TELETEXT,
0x33333ccc, 0xfb18, FLAG_TELETEXT,
0xfff33ccc, 0xfb19, FLAG_TELETEXT,
0x000ffccc, 0xfb1a, FLAG_TELETEXT,
0xcccffccc, 0xfb1b, FLAG_TELETEXT,
0x333ffccc, 0xfb1c, FLAG_TELETEXT,
0xfffffccc, 0xfb1d, FLAG_TELETEXT,
0x00000333, 0xfb1e, FLAG_TELETEXT,
0xccc00333, 0xfb1f, FLAG_TELETEXT,
0x33300333, 0x1b20, FLAG_TELETEXT,
0xfff00333, 0x1b21, FLAG_TELETEXT,
0x000cc333, 0x1b22, FLAG_TELETEXT,
0xccccc333, 0x1b23, FLAG_TELETEXT,
0x333cc333, 0x1b24, FLAG_TELETEXT,
0xfffcc333, 0x1b25, FLAG_TELETEXT,
0x00033333, 0x1b26, FLAG_TELETEXT,
0xccc33333, 0x1b27, FLAG_TELETEXT,
0xfff33333, 0x1b28, FLAG_TELETEXT,
0x000ff333, 0x1b29, FLAG_TELETEXT,
0xcccff333, 0x1b2a, FLAG_TELETEXT,
0x333ff333, 0x1b2b, FLAG_TELETEXT,
0xfffff333, 0x1b2c, FLAG_TELETEXT,
0x00000fff, 0x1b2d, FLAG_TELETEXT,
0xccc00fff, 0x1b2e, FLAG_TELETEXT,
0x33300fff, 0x1b2f, FLAG_TELETEXT,
0xfff00fff, 0x1b30, FLAG_TELETEXT,
0x000ccfff, 0x1b31, FLAG_TELETEXT,
0xcccccfff, 0x1b32, FLAG_TELETEXT,
0x333ccfff, 0x1b33, FLAG_TELETEXT,
0xfffccfff, 0x1b34, FLAG_TELETEXT,
0x00033fff, 0x1b35, FLAG_TELETEXT,
0xccc33fff, 0x1b36, FLAG_TELETEXT,
0x33333fff, 0x1b37, FLAG_TELETEXT,
0xfff33fff, 0x1b38, FLAG_TELETEXT,
0x000fffff, 0x1b39, FLAG_TELETEXT,
0xcccfffff, 0x1b3a, FLAG_TELETEXT,
0x333fffff, 0x1b3b, FLAG_TELETEXT,
0, END_MARKER, 0 // End marker
};
// The channel indices are 0, 1, 2 for R, G, B
unsigned char get_channel(unsigned long rgb, int index) {
return (unsigned char) ((rgb >> ((2 - index) * 8)) & 255);
}
CharData createCharData(GetPixelFunction get_pixel, int x0, int y0,
int codepoint, int pattern) {
CharData result;
result.codePoint = codepoint;
int fg_count = 0;
int bg_count = 0;
unsigned int mask = 0x80000000;
for (int y = 0; y < 8; y++) {
for (int x = 0; x < 4; x++) {
int *avg;
if (pattern & mask) {
avg = result.fgColor.data();
fg_count++;
} else {
avg = result.bgColor.data();
bg_count++;
}
long rgb = get_pixel(x0 + x, y0 + y);
for (int i = 0; i < 3; i++) {
avg[i] += get_channel(rgb, i);
}
mask = mask >> 1;
}
}
// Calculate the average color value for each bucket
for (int i = 0; i < 3; i++) {
if (bg_count != 0) {
result.bgColor[i] /= bg_count;
}
if (fg_count != 0) {
result.fgColor[i] /= fg_count;
}
}
return result;
}
CharData findCharData(GetPixelFunction get_pixel, int x0, int y0,
const int &flags) {
int min[3] = {255, 255, 255};
int max[3] = {0};
std::map<long, int> count_per_color;
// Determine the minimum and maximum value for each color channel
for (int y = 0; y < 8; y++) {
for (int x = 0; x < 4; x++) {
long color = 0;
long rgb = get_pixel(x0 + x, y0 + y);
for (int i = 0; i < 3; i++) {
int d = get_channel(rgb, i);
min[i] = std::min(min[i], d);
max[i] = std::max(max[i], d);
color = (color << 8) | d;
}
count_per_color[color]++;
}
}
std::multimap<int, long> color_per_count;
for (auto i = count_per_color.begin(); i != count_per_color.end(); ++i) {
color_per_count.insert(std::pair<int, long>(i->second, i->first));
}
auto iter = color_per_count.rbegin();
int count2 = iter->first;
long max_count_color_1 = iter->second;
long max_count_color_2 = max_count_color_1;
if ((++iter) != color_per_count.rend()) {
count2 += iter->first;
max_count_color_2 = iter->second;
}
unsigned int bits = 0;
bool direct = count2 > (8 * 4) / 2;
if (direct) {
for (int y = 0; y < 8; y++) {
for (int x = 0; x < 4; x++) {
bits = bits << 1;
int d1 = 0;
int d2 = 0;
unsigned long rgb = get_pixel(x0 + x, y0 + y);
for (int i = 0; i < 3; i++) {
int shift = 16 - 8 * i;
int c1 = (max_count_color_1 >> shift) & 255;
int c2 = (max_count_color_2 >> shift) & 255;
int c = get_channel(rgb, i);
d1 += (c1 - c) * (c1 - c);
d2 += (c2 - c) * (c2 - c);
}
if (d1 > d2) {
bits |= 1;
}
}
}
} else {
// Determine the color channel with the greatest range.
int splitIndex = 0;
int bestSplit = 0;
for (int i = 0; i < 3; i++) {
if (max[i] - min[i] > bestSplit) {
bestSplit = max[i] - min[i];
splitIndex = i;
}
}
// We just split at the middle of the interval instead of computing the
// median.
int splitValue = min[splitIndex] + bestSplit / 2;
// Compute a bitmap using the given split and sum the color values for
// both buckets.
for (int y = 0; y < 8; y++) {
for (int x = 0; x < 4; x++) {
bits = bits << 1;
if (get_channel(get_pixel(x0 + x, y0 + y),
splitIndex) > splitValue) {
bits |= 1;
}
}
}
}
// Find the best bitmap match by counting the bits that don't match,
// including the inverted bitmaps.
int best_diff = 8;
unsigned int best_pattern = 0x0000ffff;
int codepoint = 0x2584;
bool inverted = false;
for (int i = 0; BITMAPS[i + 1] != END_MARKER; i += 3) {
if ((BITMAPS[i + 2] & flags) != BITMAPS[i + 2]) {
continue;
}
unsigned int pattern = BITMAPS[i];
for (int j = 0; j < 2; j++) {
int diff = (std::bitset<32>(pattern ^ bits)).count();
if (diff < best_diff) {
best_pattern = BITMAPS[i]; // pattern might be inverted.
codepoint = BITMAPS[i + 1];
best_diff = diff;
inverted = best_pattern != pattern;
}
pattern = ~pattern;
}
}
if (direct) {
CharData result;
if (inverted) {
long tmp = max_count_color_1;
max_count_color_1 = max_count_color_2;
max_count_color_2 = tmp;
}
for (int i = 0; i < 3; i++) {
int shift = 16 - 8 * i;
result.fgColor[i] = (max_count_color_2 >> shift) & 255;
result.bgColor[i] = (max_count_color_1 >> shift) & 255;
result.codePoint = codepoint;
}
return result;
}
return createCharData(get_pixel, x0, y0, codepoint, best_pattern);
}
int clamp_byte(int value) {
return value < 0 ? 0 : (value > 255 ? 255 : value);
}
double sqr(double n) { return n * n; }
int best_index(int value, const int STEPS[], int count) {
int best_diff = std::abs(STEPS[0] - value);
int result = 0;
for (int i = 1; i < count; i++) {
int diff = std::abs(STEPS[i] - value);
if (diff < best_diff) {
result = i;
best_diff = diff;
}
}
return result;
}